Recent research supports the idea that implementing a more holistic pre-disaster planning approach is more cost-effective in the long run. Every $1 spent on hazard mitigation (such as a disaster recovery plan) saves society $4 in response and recovery costs
As IT systems have become increasingly critical to the smooth operation of a company, and arguably the economy as a whole, the importance of ensuring the continued operation of those systems, and their rapid recovery, has increased. For example, of companies that had a major loss of business data, 43% never reopen and 29% close within two years. As a result, preparation for continuation or recovery of systems needs to be taken very seriously. This involves a significant investment of time and money with the aim of ensuring minimal losses in the event of a disruptive event.
Disaster recovery developed in the mid- to late 1970s as computer center managers began to recognize the dependence of their organizations on their computer systems. At that time, most systems were batch-oriented mainframes which in many cases could be down for a number of days before significant damage would be done to the organization.
As awareness of the potential business disruption that would follow an IT-related disaster, the disaster recovery industry developed to provide backup computer centers, with Sun Information Systems (which later became Sungard Availability Services) becoming the first major US commercial hot site vendor, established in 1978 in Philadelphia.
During the 1980s and 90s, customer awareness and industry both grew rapidly, driven by the advent of open systems and real-time processing which increased the dependence of organizations on their IT systems. Regulations mandating business continuity and disaster recovery plans for organizations in various sectors of the economy, imposed by the authorities and by business partners, increased the demand and led to the availability of commercial disaster recovery services, including mobile data centers delivered to a suitable recovery location by truck.
With the rapid growth of the Internet through the late 1990s and into the 2000s, organizations of all sizes became further dependent on the continuous availability of their IT systems, with some organizations setting objectives of 2, 3, 4 or 5 nines (99.999%) availability of critical systems..This increasing dependence on IT systems, as well as increased awareness from large-scale disasters such as tsunami, earthquake, flood, and volcanic eruption, spawned disaster recovery-related products and services, ranging from high-availability solutions to hot-site facilities. Improved networking meant critical IT services could be served remotely, hence on-site recovery became less important.
The meteoric rise of cloud computing since 2010 continues that trend: nowadays, it matters even less where computing services are physically served, just so long as the network itself is sufficiently reliable (a separate issue, and less of a concern since modern networks are highly resilient by design). ‘Recovery as a Service’ (RaaS) is one of the security features or benefits of cloud computing being promoted by the Cloud Security Alliance.
Disasters can be classified into two broad categories.
The first is natural disasters such as floods, hurricanes, tornadoes or earthquakes. While preventing a natural disaster is very difficult, risk management measures such as avoiding disaster-prone situations and good planning can help.
The second category is man made disasters, such as hazardous material spills, infrastructure failure, bio-terrorism, and disastrous IT bugs or failed change implementations. In these instances, surveillance, testing and mitigation planning are invaluable.